Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid-gas-particle systems

نویسندگان

  • Kevin W. Connington
  • Taehun Lee
  • Jeffrey F. Morris
چکیده

a r t i c l e i n f o a b s t r a c t Due to their finite size and wetting properties, particles deform an interface locally, which can lead to capillary interactions that dramatically alter the behavior of the system, relative to the particle-free case. Many existing multi-component solvers suffer from spurious currents and the inability to employ components with sufficiently large density differences due to stability issues. We developed a liquid–gas–particle (LGP) lattice Boltzmann method (LBM) algorithm from existing multi-component and particle dynamics algorithms that is capable of suppressing spurious currents when geometry is fixed while simulating components with liquid–gas properties. This paper presents the LGP algorithm, with several code validations. It discusses numerical issues raised by the results and the conditions under which the algorithm is most useful. The previously existing particle dynamics algorithm was augmented to capture surface tension forces arising from the interface, which was validated for the case of a 2D capillary tube. Using the full algorithm, a particle situated in a region of bulk fluid in an otherwise quiescent situation remained in its original location, indicating that spurious currents were suppressed. A particle brought into the interface of a drop (without gravity) achieved its expected depth of immersion into the drop, demonstrating that all aspects of the code work together to produce the correct equilibrium state when a particle is in the interface. As in an experiment, two particles on a flat interface approached each other due to capillary effects. The simulation approach velocity was faster than that of the experiment, but agreed qualitatively, achieving the same equilibrium state. Given the validations and the favorable, though imperfect, experimental comparison, this algorithm can be a useful tool for simulating LGP systems. The motion of particles normal to the interface can be considered reliable, and the motion tangent to the interface can be considered qualitatively accurate, leading to the correct equilibrium state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection

The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...

متن کامل

Fluid Interfaces in Phase Transition Problems: Lattice-boltzmann Method

The Lattice-Boltzmann method has been seen as an alternative model for the computational simulation of fluid dynamics. It is based on the Boltzmann transport equation, which serves as the foundation of kinetic theory of gases. Considering its suitability for complex geometry problems, it has been widely applied for the description of fluid flow with one or more components inside porous media, e...

متن کامل

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 283  شماره 

صفحات  -

تاریخ انتشار 2015